Doped polymer for low-loss dielectric material in the terahertz range
نویسندگان
چکیده
The dielectric properties of an elastomeric polymer are modified with the inclusion of dopants, with the aim of reducing dielectric loss in the terahertz range. Polydimethylsiloxane (PDMS) is selected as the host polymer, and micro/nano-particle powders of either alumina or polytetrafluoroethylene (PTFE) are employed as dopants. Composite samples are prepared, and characterised with terahertz time-domain spectroscopy (THz-TDS). The samples exhibit significantly reduced dielectric loss, with a maximum reduction of 15.3% in loss tangent reported for a sample that is 40% PTFE by mass. Results are found to have reasonable agreement with the Lichtenecker logarithmic mixture formula, and any deviation can be accounted for by agglomeration of dopant micro/nano-particles. The new dielectric composites are promising for devising efficient micro-structure components at terahertz frequencies. © 2015 Optical Society of America OCIS codes: (300.6495) Terahertz spectroscopy; (310.3840) Materials and process characterization; (160.5470) Polymers. References and links 1. J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145 (1997). 2. T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013). 3. T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22, 16148–16160 (2014). 4. Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105, 181111 (2014). 5. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013). 6. M. Li, J. Xiao, J. Wu, R.-H. Kim, Z. Kang, Y. Huang, and J. A. Rogers, “Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics,” Acta Mech. Solida Sin. 23, 592–599 (2010). 7. R. Yahiaoui, K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, “Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization,” J. Opt. 16, 094014 (2014). #237517 $15.00 USD Received 3 Apr 2015; revised 7 May 2015; accepted 8 May 2015; published 15 May 2015 (C) 2015 OSA 1 Jun 2015 | Vol. 5, No. 6 | DOI:10.1364/OME.5.001373 | OPTICAL MATERIALS EXPRESS 1373 8. H. Tanoto, L. Ding, and J. Teng, “Tunable terahertz metamaterials,” IEEE Trans. Terahertz Sci. Technol. 6, 1–25 (2013). 9. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett. 102, 121101 (2013). 10. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012). 11. I. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012). 12. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011). 13. N. Han, Z. Chen, C. Lim, B. Ng, and M. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19, 6990–6998 (2011). 14. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008). 15. H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” arXiv preprint arXiv:0808.0454 (2008). 16. Q. Tang, M. Liang, Y. Lu, P. K. Wong, G. J. Wilmink, and H. Xin, “Development of terahertz (THz) microfluidic devices for lab-on-a-chip applications,” in Proc. SPIE Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 8585, art. no. 858506 (San Francisco, California, 2013), 17. S. Walia, C. M. Shah, P. Gutruf, H. Nili, D. R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, and S. Sriram, “Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nanoscales,” Appl. Phys. Rev. 2, 011303 (2015). 18. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006). 19. R. H. Giles, A. Gatesman, J. Fitzgerald, S. Fisk, and J. Waldman, “Tailoring artificial dielectric materials at terahertz frequencies,” in Proc. of the Fourth International Symposium of Space THz Technology, 124 (Los Angeles, CA, 1993). 20. B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss,” J. Opt. Soc. Am. B 28, 917–921 (2011). 21. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009). 22. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010). 23. S. Wietzke, C. Jansen, F. Rutz, D. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007). 24. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505–043505 (2011). 25. K. Berdel, J. G. Rivas, P. H. Bolı́var, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE T. Microw. Theory 53, 1266–1271 (2005). 26. Z. Haskal, A. Davis, A. McAllister, and E. Furth, “PTFE-encapsulated endovascular stent-graft for transjugular intrahepatic portosystemic shunts: experimental evaluation.” Radiology 205, 682–688 (1997). 27. Y. Takami, T. Nakazawa, K. Makinouchi, J. Glueck, and Y. Nosé, “Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump,” J. of Biomed. Mater. Res. 36, 381–386 (1997). 28. R. Simpkin, “Derivation of Lichtenecker’s logarithmic mixture formula from Maxwell’s equations,” IEEE T. Microw. Theory 58, 545–550 (2010). 29. B.-Y. Ung, J. Li, H. Lin, B. M. Fischer, W. Withayachumnankul, and D. Abbott, “Dual-mode terahertz timedomain spectroscopy system,” IEEE Trans. Terahertz Sci. Technol. 3, 216–220 (2013). 30. W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J Infrared Millim. Terahertz Wave 35, 610–637 (2014). 31. A. Sihvola, “Two main avenues leading to the maxwell garnett mixing rule,” J. Electromagnet. Wave 15, 715–725 (2001). 32. J. M. Garnett, “Colours in metal glasses and in metallic films,” Proc. Roy. Soc. Lond., pp. 443–445 (1904). 33. H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31, 401–406 (1965). 34. A. Hernandez-Serrano, S. Corzo-Garcia, E. Garcia-Sanchez, M. Alfaro, and E. Castro-Camus, “Quality control of leather by terahertz time domain spectroscopy,” Appl. Opt. 53, 7872–7876 (2014). 35. J. Peelen and R. Metselaar, “Light scattering by pores in polycrystalline materials: Transmission properties of #237517 $15.00 USD Received 3 Apr 2015; revised 7 May 2015; accepted 8 May 2015; published 15 May 2015 (C) 2015 OSA 1 Jun 2015 | Vol. 5, No. 6 | DOI:10.1364/OME.5.001373 | OPTICAL MATERIALS EXPRESS 1374 alumina,” J. Appl. Phys. 45, 216–220 (1974). 36. K. Chenoweth, S. Cheung, A. C. Van Duin, W. A. Goddard, and E. M. Kober, “Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field,” J. Am. Chem. Soc. 127, 7192–7202 (2005). 37. C. Nelson, S. Sant, L. Overzet, and M. Goeckner, “Surface kinetics with low ion energy bombardment in fluorocarbon plasmas,” Plasma Sources Sci. T. 16, 813 (2007).
منابع مشابه
Dielectric Function of Undoped and Doped Poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene-vinylene] by Ellipsometry in a Wide Spectral Range
Ellipsometric measurements in a wide spectral range (from 0.05 to 6.5 eV) have been carried out on the organic semiconducting polymer, poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] (MDMO-PPV), in both undoped and doped states. The real and imaginary parts of the dielectric function and the refractive index are determined accurately, provided that the layer thickness is measu...
متن کاملTerahertz plasmonic composites.
The dielectric response of a polymer matrix composite can be substantially modified and tuned within a broad frequency band by integrating within the material an artificial plasmon medium composed of periodically distributed, very thin, electrically conducting wires. In the microwave regime, such plasmon/polymer composites have been studied analytically, computationally, and experimentally. Thi...
متن کاملDielectric properties of polymer composites with the addition of ferrite nanoparticles
The aim of the work was examination of the dielectric properties of a new type of polymer nanocomposites based on PVDF (polyvinylidene fluoride), or a copolymer P(VDF-HFP) with addition of ferrite nanoparticles. The addition of nanofillers leads not only to the formation of polar -phase of PVDF, which shows unique piro-, piezoand ferroelectric properties used in many applications, but also aff...
متن کاملBroadband Dielectric Characterization of Aluminum Oxide (Al2O3)
Applications for low temperature co-fired ceramics (LTCC) and high temperature co-fired ceramics (HTCC) are advancing to higher frequencies. In order to design ceramic microsystems and electronic packages, the electrical properties of materials must be well characterized over a broad frequency range. In this study, the dielectric properties of commercial Aluminum Oxide (Al2O3) with different gl...
متن کاملFabrication and Characterization of Polymer Blend Doped With Metal Carbide Nanoparticles for Humidity Sensors
Nanocomposites films of (polymer blend-ceramics) were prepared from (PVA-PAA) blend and (PVA-PAA) blend doped with niobium carbide nanoparticles for humidity sensors have low cost, easy fabrication, high sensitivity, lightweight and high corrosion resistance. The structural, electrical and optical properties of (PVA-PAA-NbC) nanocomposites have been studied. The D.C electrical properties of (PV...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015